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Computer simulation studies of anisotropic systems 

XIV. Binary mixtures of liquid crystals 

by R. HASHIM, G. R. LUCKHURST and S. ROMANO? 
Department of Chemistry, The University, Southampton, SO9 5NH, England 

(Received 17 October 1985; accepted 28 November 1985) 

We have simulated the behaviour of a model, binary mixture of nematogens 
composed of cylindrically symmetric particles using the Monte Carlo technique. 
The characteristics of the model mixture were chosen to be in accord with most of 
the assumptions made in the Humphries-James-Luckhurst theory of liquid crys- 
talline mixtures. The results of the simulation experiments allow us to test, for the 
first time, the validity of the molecular field approximation in this theory. In 
addition to the second rank long range orientational order parameters for both 
components of the mixture we have also determined certain orientational pair 
correlation functions. These enable us to investigate the ability of one component 
to  enhance the order of the other component or the same component in its vicinity. 

1. Introduction 
Mixtures of liquid crystals are of fundamental interest and of technological 

importance. Thus the nematogenic materials employed in electro-optic displays are 
multicomponent mixtures whose nature and composition are selected to achieve 
particular display characteristics [ 11. For example, the liquid crystalline range is 
enhanced by the addition of nematogens with high nematic-isotropic transition 
temperatures, such as the 4-n-alkyl-4-cyanoterphenyls, to materials with lower tran- 
sitions such as the corresponding cyanobiphenyls. Solutions of pleochroic dyes in a 
nematogenic solvent are also of potential importance in display technology 121. Liquid 
crystalline mixtures are of fundamental interest because their properties provide a 
unique insight into the anisotropic interactions between unlike species. An under- 
standing of these properties requires a molecular theory of liquid crystalline mixtures, 
in addition such theories are also of value in the design of mixtures for display devices. 

One of the earliest theories for multicomponent mixtures, formed from cylindri- 
cally symmetric particles, was developed by Humphries, James and Luckhurst based 
o n  the molecular field approximation [3]. This gave the potential of mean torque for 
component A in a binary liquid crystalline mixture as 

VA(C0sB) = - ( ( I  - x)fifAp; + Xfi$’P~)P2(COSp) (1) 

&(Cos 8) = - ((1 - x)fi;”Pp,” + x f i ~ ’ P ~ }  pz(cos p), (2) 

and for the other component 

where P z ( c o s ~ )  is the second Legendre polynomial and B is the angle made by the 
molecular symmetry axis of a particular species with the director. The second rank 

t Permanent address: Department of Physics, The University and GNSM-CNR, Via A. 
Bassi 6, 1-27100, Pavia PV, Italy. 
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134 R. Hashim et al. 

orientational order parameters for components A and B are written as P,” and P,”, 
respectively. The mole fraction of component B is denoted by x, ii:” is an average 
strength parameter for anisotropic interactions between species A and is that for 
interactions between unlike species. The particular composition dependence for the 
potentials of mean torque results from the assumption of random mixing in the 
solution. The theory further assumes the Berthelot rule 

(3) 
to relate the mixed interaction parameter to those for the pure components. With this 
assumption the nematic-isotropic transition temperature for the mixture was found 
to be linearly dependent on those of the components 

@B = (@Afi!B)1/2 

T,”, = (1  - x ) T i 1  + xT,”,. (4) 
Here the transition temperatures T i ,  and T i l  are related to the interaction parameters 
by, for example, [4] 

T i l  = 0.2203iifA/k. ( 5 )  

This simple result for T,”, was obtained by ignoring the possibility of separation into 
nematic and isotropic phases at the transition, although this must occur in practice 
because the nematic-isotropic transition is first order. The theory has been extended 
to allow for phase separation [5,6] but for many mixtures of nematogens the width 
of the biphasic region is very small. The Humphries-James-Luckhurst theory may 
also be used to predict the orientational order parameters for the individual com- 
ponents as a function of either composition or temperature. For example, at a fixed 
temperature the composition dependence of the two order parameters in a binary 
mixture is found to be similar with an essentially constant difference between them, 
the component with the higher transition having the larger order parameter [7]. The 
compositionally weighted average 

P,” = (1 - x)P:  + X P , ” ,  (6) 

which is usually measured in experimental studies of mixtures is found [7] to vary in 
a manner predicted by the analogous theory for single component systems proposed 
by Maier and Saupe [4]. 

There have been relatively few tests of the various theoretical predictions, although 
such evidence that is available appears to support the theory [3,8,9]. None the less 
it would be of considerable value to have more detailed experimental results which 
would allow an evaluation of the reliability of specific approximations made in 
developing the theory. Thus the mixture should be composed of rigid, cylindrically 
symmetric particles, the anisotropic interactions should be of second rank, the mixing 
should be random, separate phases should not be formed at the nematic-isotropic 
transition and the volume of transition should be zero. Clearly such demanding 
constraints cannot be met by real nematogenic mixtures whose component molecules 
are flexible and of low symmetry, in addition the nature of the anisotropic interactions 
are unknown. We have therefore undertaken a computer simulation study of a model 
binary nematogenic mixture. This has the major advantage that all of the constraints 
can be satisfied which allows us to provide a unique test of the use of the molecular 
field approximation for nematogenic mixtures. The precise nature of the model is 
described in the following section. In 53 the Monte Carlo method used to study the 
mixture is outlined and the properties which are evaluated by the simulation are 
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Computer simulation of liquid crystal mixtures I35 

described. The results of the computations are given in $4 where they are compared 
with the predictions of the Humphries-James-Luckhurst theory. 

2. The model nematogenic mixture 
We take as a model for the pure nematogenic components that proposed and 

investigated by Luckhurst, Romano and Simpson [lo]. In this the cylindrically 
symmetric particles are confined to the sites of a face centred cubic lattice; the 
practical advantages and conceptual disadvantages of using lattice models for liquid 
crystals have been discussed elsewhere [ 1 11. The anisotropic interactions are restricted 
to nearest neighbours and for these take the form 

where E is a positive constant and Pi j  is the angle between the symmetry axes of 
particles i and j .  This system exhibits a weak, first order phase transition between 
orientationally ordered and disordered phases when the scaled temperature T* (= k 7 ' / ~ )  
is equal to 2.43 0.03. The second rank order parameter, P2, at the transition is 
0.31 k 0.03 and the entropy of transition, AS/R,  is 0.04 k 0.02; these values are 
typical of those determined for real nematics. 

The extension of this model to a binary mixture necessitates the introduction of 
three pair potentials each with a particular interaction parameter EAA,  EBB and E ~ ~ .  

However to simplify the computations we have used such a low concentration of 
component B that the probability of finding them as nearest neighbours is negligible 
and so E~~ does not enter the calculation. Low concentrations are certainly compatible 
with that of a dye in a nematogenic solution and also that of the nematogens added 
to increase the nematic-isotropic transition of a mixture. As the concentration of 
component B is small we shall refer to it as the solute and to A as the solvent. The 
solute is placed at random on the lattice sites with the additional constraint that no 
two are nearest neighbours. This particular distribution remains unchanged during 
the simulation experiment and so phase separation at the transition cannot occur. We 
have shown for similar mixtures but with biaxial solutes that the results of the 
simulation are independent of the particular random distribution chosen for the 
solute [12]. 

3. The Monte Carlo simulations 
We have employed the standard Monte Carlo technique with periodic boundary 

conditions, as introduced by Metropolis et al. [13]. The use of this simulation 
procedure in the study of model liquid crystals is described in detail elsewhere [lo, 1 I ]  
and so here we concentrate on those new features which result from the presence of 
two components. 

The random distribution of the solute particles on the lattice was achieved in the 
following way. The N sites of the face centred cubic lattice were labelled with the 
integers 1 to N .  The site for the first solute was chosen by generating a random number 
uniformly distributed in the range 0-1 and then converting it to an integer between 
1 and N .  The remaining solutes were allocated to lattice sites in the same manner but 
now the location of each new solute was checked to ensure that it was not adjacent 
to another solute. If it was then the location was rejected and a new site generated. 
This procedure was repeated until all solute particles had been assigned to the 
lattice. 
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136 R. Hashim et al. 

The orientations of solute and solvent particles were stored as the unit vectors for 
their symmetry axes in the laboratory frame. These orientations were changed 
using the scheme proposed by Barker and Watts [14]. The two components were 
assigned different maximum displacements, AA and AB,  in this scheme so that the 
acceptance : rejection ratios for solute and solvent may be kept at  their optimum value 
of unity. It was not necessary to sample the solvent particles preferentially because the 
solute concentration was such that there are as many solvent particles adjacent to a 
solute as are not [ 151. 

The properties evaluated by the simulations were the total scaled internal energy 
per particle, u* (= u / / N & A A )  together with the internal energy associated with the 
interaction between solvent molecules alone, @A and between solute and solvent uzB. 
These particular properties were calculated because as we shall see for a lattice model 
with nearest neighbour interactions they are directly related to the short range 
orientational correlations. The heat capacity per particle, C:, was determined both by 
numerical differentiation of the total internal energy with respect to temperature and 
from the fluctuations in the total internal energy 

c; = N{* - (D*),}/T*2, (8) 

where the scaled temperature T* is kT/EAA. The observed divergence in C:is used 
to locate the nematic-isotropic transition and hence to determine the transition 
temperature. 

The orientational structure of the mixture was studied through the orientational 
correlation functions GZAA ( r*) ,  G t A ( r * )  and GtB(r*); here r* is the scaled separation 
(r/a) between molecules of the particular species where 4 2  a is the lattice spacing. The 
functions are defined, for example, by 

G,AB(r*) = P,{COS BAB(~*)) ,  (9) 

where B A B ( r * )  is the angle between the symmetry axes of a solvent and a solute particle 
separated by r*. For nearest neighbour separations (r* = 1) the correlation functions 
are equal to the short range order parameters [I I], for example, 

These order parameters are directly proportional to the appropriate internal energy 
for lattice models with interactions restricted to nearest neighbours, thus for the 
solvent, 

where z is the coordination number [l 11.  The fourth rank angular correlation function 
for the solvent was calculated because it provides a route to the fourth rank long range 
order parameter P," . In the limit of large separations the orientational correlations are 
lost and so 

lim GtA(r* )  = (P,")'. (12) 
,*-m 

The analogous second rank quantities F: and p; could be obtained in the same 
way but as this is particularly demanding of computer time we have adopted an 
alternative approach. The long range order parameter is defined by 

P,  = Pz(COS/3), (1 3) 
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Computer simulation of liquid crystal mixtures 137 

where is the angle made by the molecular symmetry axis with the director. During 
the course of the simulation the director fluctuates in the laboratory frame but it may 
be located by evaluating the Q tensor [ 161 

Qab = (%X - 6a,)/2, (14) 

where Za is the direction cosine of the molecular symmetry axis with the laboratory a 
axis. The largest eigenvalue of Q gives the order parameter p2 and the components 
of the eigenvector associated with this are the direction cosines of the director in the 
laboratory frame [I  1,161. In principle the Q tensor could be diagonalized for every 
configuration during the production run and the largest eigenvalue averaged. In 
practice it is more economic in computer resources, first to average Q over many 
configurations, the number being restricted only to ensure that the director orien- 
tation does not change. The averaged Q tensor is then diagonalized and the largest 
eigenvector averaged over the production run. 

In Monte Carlo simulations of dilute nematogenic solutions this procedure could 
be used to obtain the order parameter for the solvent but not for the solute because 
the number of solute particles is too small to locate the director accurately. We have 
therefore adopted the following scheme which was devised originally for our study of 
biaxial solutes [12]. We define a total Q tensor for the mixture by taking a linear 
combination of the Q tensors for the components 

Q" = ( 1  - x)Q" + xQB.  (15) 

The eigenvector of QM associated with its largest eigenvalue is used to define the 
director orientation; this definition based on the total Q tensor stems from the fact 
that the director is a property of the mixture and not simply one of its components. 
The orthogonal matrix R which diagonalizes QM is then used to transform QA and QB 
to the director frame. The largest diagonal elements of R - ' Q A R  and R-'QBR are 
averaged over the production run and these averages are identified as the second rank 
order parameters P: and P," for the solvent and solute, respectively. 

We turn now to the computational details. The mixture contained a total of 500 
particles which were placed on the sites of a cube of 5 x 5 x 5 face centred unit cells. 
Of these, 25 sites were occupied by solutes corresponding to a mole fraction, x ,  of 
0.05. The solute was taken to be more anisotropic than the solvent and this is reflected 
by the mixed interaction E~~ which is twice that for the solvent 

EAB = ~ E A A  (16) 
and so according to the Berthelot combining rule the interaction parameter for the 
pure solute is 

EBB = 4EAA. (17) 
In consequence the nematic-isotropic transition temperature for the solute would be 
four times that for the solvent. The mixture was studied over the scaled temperature 
range from 1.4 to 3.5 which encompasses both ordered and disordered phases. The 
first configuration had complete orientational order; this was equilibrated a t  a scaled 
temperature of 0.5 for 2000 cycles where one cycle consisted of 500 configurations or 
attempted moves. The temperature was then increased to 1.0 and the system was 
further equilibrated for 4000 cycles. Finally the scaled temperature was set equal to 
1.4 which was the first of the series. The mixture was equilibrated for 8000 cycles and 
the production run consisted of 5000 cycles. The starting configurations for higher 

thus 
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138 R. Hashim et al. 

temperatures in the series were taken as the last configuration from the equilibration 
stage of the preceding lower temperature. With this choice the production stage for 
a given temperature as well as the equilibration stage for the next may be started at 
the same time, which is of some benefit. The equilibration and production runs again 
consisted of 8000 and 5000 cycles respectively except in the vicinity of the phase 
transition where the lengths of these runs were doubled. Unlike the other properties 
the pair correlation functions were calculated once for each cycle, using all pairs of 
particles, and then averaged over the production run. Finally we note that the 
optimum value for the maximum displacement of the solvent, AA, was found to be 
approximately twice that of the solute A,, which is in accord with the greater 
anisotropy of the solute-solvent interaction. 

4. Results and discussion 
We begin with the heat capacity, C:, whose temperature dependence is shown in 

figure 1 .  The results for C,*, were calculated from the temperature derivative of the 
total internal energy (0 )  and from the fluctuations in the internal energy (0); the 
agreement between these two sets of results is seen to be very good. Also included in 
figure 1 is the temperature dependence of the heat capacity for the pure solvent [lo]. 
The heat capacities for both systems are observed to diverge, as expected for first 
order phase transitions, although the divergence shown by the mixture is not so 
marked as that found for the pure solvent. The transition temperature of the mixture 
is estimated to be 2.73 f 0.03 from C: which is significantly greater than T& of 
2.43 f 0.03 found for the pure solvent [lo]. Such an increase is to be anticipated 
because of the greater anisotropy of the solute and can be predicted from the 
Humphries-James-Luckhurst theory [3]. However the molecular field approximation 
used in this theory is known to overestimate the orientational order and hence the 
nematic-isotropic transition temperature. Thus for the pure solvent T& is predicted 
to be 2.643 corresponding to an overestimate of about 8 per cent [lo]. It is to be 
expected therefore that TE* obtained from equation (4) for T& of the mixture with 
the theoretical transition temperatures will also be too large and this is indeed the 

lU/ 

I 

c; 

8t 
0 I 

0 I 

Figure 1. The dependence of the scaled heat capacity per particle, C:, on the scaled tem- 
perature, T*,  for the pure solvent (0) and for the mixture, calculated from the fluctu- 
ations in the internal energy (0) and its temperature derivative (a). 
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Computer simulation of liquid crystal mixtures I39 

case, for TK* is found to be 3.038. We could, however, predict the transition tem- 
perature for the mixture from equation (4) but with the true transition temperature 
for the two components. T$' is 2-43 and since EBB is four times EAA (cf. equation (17)) 
i$': for the solute should be 9.72 which gives the transition temperature for the 
mixture as 2.79 f 0.03 in good agreement with the value we have determined. 

Strictly, equation (4) is not valid for the mixture which we have studied because 
solute-solute interactions are excluded; in consequence the potential of mean torque 
for the solute is given by 

U,(COS f l )  = - ii;BP;P2(cos f l )  ( 1  8) 

and not the expression contained in equation (2), but the solvent potential given in 
equation ( I )  still holds, However, for the low solute concentration employed in the 
simulation experiments there is little difference between the solute potential of mean 
torque in equations (2) and (18); the T& predicted by equation (4) should not 
therefore be seriously in error. None the less we have calculated the transition 
temperature for the mixture studied in the simulation with its pseudo-random solute 
distribution, using the correct potential for the solute. To obtain TG we require the 
difference in the orientational Helmholtz free energy, per particle, between the nematic 
and isotropic phases for the mixture, this is 

- ( 1  - x)kTln(Z,/2) - xkTln(ZB/2). 

Here the orientational partition functions for the solute and solvent are given, for 
example, by 

ZA = j exp  { - UA(cos fl)/kT} sin f l  dfl. (20) 

At the nematic-isotropic transition A A  vanishes and for the mixture whose properties 
we have simulated this is found to occur when 

TC = 0.2472gA/k. (21) 

The interaction parameter UY is related to the transition temperature for the pure 
solvent via equation (5); using the value for T:: of 2.43 obtained from the Monte 
Carlo simulation of the solvent [ 101 we find the scaled transition temperature for the 
mixture to be 2.73. This result is in exact agreement with the observed transition 
temperature for the mixture but as we had anticipated it does not differ greatly from 
the prediction based on the assumption of a perfectly random distribution for the 
solute and the solvent. 

The long range, second rank orientational order parameters for the solvent, P; ,  
(0 )  and for the solute, P,", (A) are shown in figure 2 as a function of the reduced 
temperature, T*/Tz*. Use of a reduced temperature scale allows us to include the 
results for the pure solvent (0) and for these the reduced temperature is defined as 
T*/T;:. All of the order parameters fall rapidly in the vicinity of the phase transition 
but do not vanish in the isotropic phase. This behaviour is characteristic of most 
simulation studies of model nematogens and results from the relatively small size of 
the system [ I  I ,  171 although it need not concern us here. The solute order parameter 
is seen to be considerably larger than that of the solvent in the mixture and this is to 
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1.0 -- 
O 4  t 
0.2 1 

? 
a .  
0 
0 

0 ’  i 
0.3 0.6 0.9 1.2 1.5 

Figure 2. The variation of the order parameter, p 2 ,  for the solute (A) and the solvent (0 )  in 
the mixture as a function of the reduced temperature, T*/Ts*, together with that for the 
pure solvent (0) where T*/T,”: is the reduced temperature. 

be expected given the greater anisotropy of the solute. The order parameter of the 
pure solvent is found to be slightly larger than that of the solvent in the mixture at 
the same reduced temperature. This difference is not so easily understood although it 
is in accord with predictions of the Humphries-James-Luckhurst theory [6,9]. How- 
ever, before we make a detailed comparison between the results of the simulations and 
the predictions of this theory we must see whether the angular dependence of the 
potential of mean torque is in accord with theory. 

The singlet orientational distribution function, from which the potential of mean 
torque could be extracted, was not determined for either species from the Monte 
Carlo simulation, as this is particularly demanding in computer resources. For- 
tunately, it is possible to obtain some information about the potential from the second 
and fourth rank orientational order parameters which are available from the simu- 
lation, at least for the solvent. As we have seen the second rank order parameter, P; ,  
is determined directly but P t  must be obtained from the large separation limit of the 
fourth rank orientational correlation function GtA(r* )  (cf. equation (12)). To ensure 
that this limit is reached for the size of system which we have been able to study we 
consider the behaviour of the second rank orientational correlation functions for the 
solvent with itself, GtA(r * ) ,  and with the solute, GtB(r*); these are shown in figures 
3 (a), (b) respectively. We note that such pair correlation functions are forced to 
exhibit a minimum at a separation corresponding to half the dimension of the system 
by the periodic boundary conditions employed in the simulation. However we are able 
to see if the correlation functions have decayed to their limiting values because we 
have obtained the long range order parameters for the solute and solvent separately. 
The long range limits, of (P:)’ and r‘,”P,”, are shown as the horizontal solid lines in 
figures 3 (a),  (b), respectively and for scaled separations, r*, greater than approximately 
3 the correlation functions have clearly dropped to their limiting values. We may 
therefore use the fourth rank orientational correlation function, GtA(r*) ,  shown in 
figure 4, to determine the fourth rank order parameter, P t ,  for the solvent with some 
confidence; the results obtained from the limiting values of GtA(r* )  are listed in the 
table. We can now employ these, together with P,” determined at  the same scaled 
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Computer simulation of liquid crystal mixtures 141 

Figure 3. (a) The second rank orientational correlation function, GtA(r*), for the solvent 
with itself, as a function of the scaled separation. (b) The dependence of the second rank 
orientational correlation function for the solvent with the solute, GtB(r*), on the scaled 
separation, r* .  The solid lines in both figures show the large separation limits (a) (Pt)' 
and (b)  pt',"P," calculated from the order parameters obtained directly from the simu- 
lation. 

The fourth rank order parameter, p t ,  for the solvent determined from the limiting value of 
GtA(r*)  and predicted via equation (22) with aA obtained from the observed p:.  

Ft 
T* Observed Predicted 

2.00 0.363 0.311 
2.40 0.219 0.23 1 
2.65 0.105 0.109 
2.15 0.055 0.040 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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0.25 I I I 1 
T' 

G:A( r ') 

015 

r* 

Figure 4. The fourth rank orientational correlation function, GtA(r* ) ,  for the solvent with 
itself as a function of the scaled separation, r*. 

temperatures, to test the predicted form for the potential of mean torque. According 
to theory the orientational order parameters of rank L are given by 

ij; = Z ,  ' P,(COS p) exp (aA P,(COS p)) sin f i  dp, (22) s 
s 

where the orientational partition function is 

Z A  = exp { aA P,(COS p)} sin p dp (23) 

and the coefficient uA varies with temperature. However at a given temperature we can 
use the observed value of P t  to determine aA this can then be employed to calculate 
&' which may be compared with the simulation results. The predicted values of P t  
are also given in the table and are seen to be in reasonably good agreement with those 
determined from the simulation, thus providing some confirmation for the angular 
variation of the potential of mean torque obtained from the theory. 

Given this confirmation we may now compare the order parameters for both 
solute and solvent with those predicted by the Humphries-James-Luckhurst theory. 
As we have seen, the solvent order parameter, P t ,  can be used to determine the 
coefficient aA in the potential of mean torque and according to theory this is given by 

a A  = ((1 - x)ii;""P,A + xfif"I',B}/kT (24) 
(cf. equation (1)). For the lattice model which we have studied the interaction 
parameters are predicted to be 

and 

in consequence a plot of aA T* against ((1 - x)Pt + 2xP;) should be linear through 
the origin with a slope equal to the coordination number, z. The results for such an 
analysis are shown in figure 5; the points clearly fall on a straight line which passes 
close to the origin. A least squares fit gives the slope of the line as 10.42 0.05 which 
is not in complete agreement with the value required by theory of 12. Such a 
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Computer simulation of liquid crystal mixtures 143 

111 - x \F; + 2xF5 

Figure 5. The dependence of aA T* for the solvent on the combination of solute and solvent 
order parameters { ( l  - x )  P ,  + 2 x P s } ;  the straight line shows the best fit to the data. 

discrepancy has also been observed for the Lebwohl-Lasher model nematogen where 
the effective coordination number, zCf, is found to be 5-05 k 0.02 in comparison with 
its true value of 6 and has been attributed to a failure of the molecular field 
approximation [18]. A similar analysis of the results obtained by Luckhurst, Romano 
and Simpson [lo] for the pure solvent yield zCf of 10.1 f 0.1 in good agreement with 
the value found for the mixture. 

The solute order parameter, P,”, is given by an expression analogous to that in 
equation (22) but now the coefficient, a,, in the potential of mean torque for the 
solute is given by 

aBT* = 2zP; (27) 

(cf. equation ( 1  8)). As for the solvent aB may be calculated from P,”; aB T* is indeed 
found to be linear in the solvent order parameter F; and the straight line passes near 
to the origin. The effective coordination number determined from the slope is found 
to be 8.86 k 0.05 which differs significantly from z found for the solvent, of 
10.42 0.05, as well as the true coordination number of 12. Clearly as the anisotropy 
in the solute-solvent interaction, EAB, approaches that for the solvent-solvent inter- 
action, cAA, so the effective coordination number for the solute must tend to the value 
found for the solvent, which implies that zeK depends on the anisotropy of the 
solute. In order to test this notion we have performed additional Monte Carlo 
simulations for which the anisotropy in the solute-solvent interaction was increased 
from 2EAA to 36AA whilst keeping all other aspects of the model mixture the same. The 
system was not studied for as many temperatures nor for such a wide temperature 
range as the original model mixture. However we were able to determine the effective 
coordination number for the solvent and solute from their respective second rank 
orientational order parameters. Thus z , ~  obtained from the solvent order parameter 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



144 R. Hashim et uf. 

was found to be 10.0 & 0-3 whilst that from the solute is 7.0 & 0.3. We see therefore 
that the increase in the anisotropy of the solute has no significant effect on the effective 
coordination number of the solvent but does reduce the value for the solute, as we 
had speculated. The molecular field approximation would appear to yield the angular 
dependence of the potentials of mean torque for both solute and solvent in good 
agreement with the simulation experiments. In addition the functional dependence of 
the coefficients, aA and uB, on the solvent and solute order parameters are also well 
predicted by the theory. However the effective coordination numbers for solute and 
solvent obtained from the simulation are not predicted by the molecular field approxi- 
mation and for the solute the discrepancy increases with its anisotropy. 

The molecular field approximation also fails to predict the correct behaviour of 
the orientational correlation functions, for according to this approximation GL(r*) 
should be independent of the separation, r*, and equal to its long range limit [4]. Thus 
for the solute-solvent second rank correlation function the approximation gives 

GPB(r*) = p tp? .  (28) 

From the results for GtA(r*) ,  GfB(r*)  and GtA(r*)  shown in figures 3 and 4 it is clear 
that for separations less than about 3 the correlation functions do depend on r* and 
exhibit an increasing deviation from the long range limit as the separation decreases. 
In addition the orientational correlations are predicted to vanish in the isotropic 
phase, because the long range order parameters are zero, but clearly signficant 
correlations remain. Similar deviations from the molecular field approximation are 
observed [lo, 1 1 1  for single component model nematogens and the failure of the 
approximation to predict the transition temperature as well as the entropy of tran- 
sition has been attributed to these. 

A highly anisotropic solute molecule is expected to be able to enhance the 
orientational order of less anisotropic solvent molecules in its vicinity to a greater 
extent than when they are near another solvent molecule. Indeed comparison of the 
results for Gf"(r*) with those for G f B ( r * ) ,  in figures 3 (a), (b) respectively, appears to 
support this expectation since at a given temperature GtB(r*) is greater than GtA(r* ) .  
However, part of this difference originates because the long range orientational order 
of the solute, p,", is higher than that for the solvent, pt. To compensate for this 
difference and to quantify the enhanced local ordering of the solvent by the solute we 
use the excess short range order parameter, do, [ 101 which is defined, for example, by 

A#' = o y  - PfF,". (29) 

The values for the short range order parameters, 0;" and otB, were determined from 
the solvent-solvent and solute-solvent contributions to the internal energy via 
equation (1 1). The results for Ao, are shown in figure 6 as a function of the reduced 
temperature since this scale allows a comparison with the corresponding results for 
the pure solvent [lo]. As we can see all three excess short range order parameters 
increase with increasing temperature and pass through a maximum at the nematic- 
isotropic transition which therefore corresponds to the temperature when the error in 
the molecular field approximation is greatest; if the approximation was exact AD, 
would vanish. The excess solute-solvent short range order parameter is clearly 
the largest and so confirms the expected greater ability of the solute to enhance the 
local solvent order in comparison with that of the solvent to order neighbouring 
solvent molecules. This ability of the highly anisotropic solute is of considerable 
interest for the interpretation of the ordering behaviour of liquid crystalline mixtures. 
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For example, it may well be of relevance to systems such as proteins dissolved in 
membranes where the lipid in the vicinity of the protein is claimed to be more highly 
ordered than in the bulk [19], although this view is not universally accepted [20]. The 
results in figure 6 also reveal that the excess short range order, AatA,  in the pure 
solvent is greater than for the mixture at the same reduced temperature. This signifi- 
cant difference is in accord with the slight depression of the long range order par- 
ameter P: for the solvent by the addition of the solute. Such behaviour of P: is 
certainly predicted by the Humphries-James-Luckhurst theory but this theory is 
quite unable to account for Aa2 and its variations. The short range order is available 
from cluster theories [21] and the theory of nematic disorder proposed by Faber [22] 
but although these have been developed for pure nematogens we are unaware of 
similar theories for mixtures. 
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